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Abstract. Determining the global minimum of Higgs potentials with several Higgs fields like the next-to-
minimal supersymmetric extension of the standard model (NMSSM) is a non-trivial task already at the tree
level. The global minimum of a Higgs potential can be found from the set of all its stationary points defined
by a multivariate polynomial system of equations. We introduce here the algebraic Groebner basis approach
to solve this system of equations. We apply the method to the NMSSM with CP -conserving as well as CP -
violating parameters. The results reveal an interesting stationary-point structure of the potential. Requiring
the global minimum to give the electroweak symmetry breaking observed in Nature excludes large parts of
the parameter space.

1 Introduction

It is a non-trivial task to find the global minimum for Higgs
potentials with a large number of Higgs fields. For instance
in the next-to-minimal supersymmetric extension of the
standard model (NMSSM) [1–3], the Higgs sector consists
of two (complex) electroweak doublets and one (complex)
electroweak singlet, that is eight real fields from the dou-
blets plus two real fields from the singlet. The conventional
approach based on the unitary gauge requires the global
minimum to be found in a 7-dimensional field space.
In this paper we introduce an algebraic approach to de-

termine the global minimum of the Higgs potential. We
describe how to compute all stationary points, from which
then the one with the lowest value of the potential can be
identified as the global minimum. We apply the method
to the NMSSM, where we can reveal a quite surprising
structure of stationary points; that is minima, maxima,
and saddle points with different behaviour with respect to
the symmetry breaking of the SU(2)L×U(1)Y electroweak
gauge group.
The global minimum of the Higgs potential gives the

expectation values of the Higgs fields at the stable vac-
uum. Parameter values for the Higgs potential are thus
considered acceptable only if the global minimum of the
Higgs potential occurs for Higgs field vacuum expecta-
tion values which induce the spontaneous breakdown of
SU(2)L×U(1)Y to the electromagnetic U(1)em at the ob-
served electroweak scale v ≈ 246GeV.
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We consider the tree-level Higgs potential for general
models with two Higgs doublets and an arbitrary num-
ber of additional Higgs singlets. The first step is to notice
that the potential is restricted by renormalisability and
gauge invariance. Renormalisability requires at most quar-
tic terms in the real fields in the potential. Electroweak
gauge invariance restricts the possible doublet terms in
the potential, since only gauge invariant scalar products of
doublets can occur. Substituting the doublet fields by ap-
propriate functions of these invariant terms, we eliminate
all gauge degrees of freedom from the potential and effec-
tively reduce the occurring powers in the doublet terms.
The method to base the analysis on quadratic gauge invari-
ant functions was introduced already in the context with
the general two-Higgs doublet model [4, 5].
If the potential is bounded from below, the global min-

ima are given by the stationary points with the lowest
value of the potential. The stationarity conditions form
a non-linear, multivariate, inhomogeneous polynomial sys-
tem of equations of third order. In this work we want to
introduce a systematic approach to solve these – in gen-
eral quite involved – systems of polynomial equations. We
propose to determine the stationary points by a Groeb-
ner basis computation, which is well established in ideal
theory [6–8]. The Groebner basis was originally introduced
to solve the ideal membership problem. Constructing this
Groebner basis in an appropriate order of the monomi-
als (the terms of the polynomials including coefficients),
for instance the lexicographical ordering, and subsequent
triangularisation allows one to solve the initial system of
equations algorithmically for any finite number of complex
solutions. The introduction of gauge invariant functions
just avoids continuous gauge symmetries in the potential
and the finiteness of the set of complex solutions can eas-
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ily be checked within this algorithmic approach. Moreover,
this approach guarantees that all stationary points are
found.
We apply the method introduced to the NMSSM. For

the computation of Groebner bases as well as the sub-
sequent steps to solve the systems of equations we em-
ploy the freely available open-source algebra program
SINGULAR [9]. We find that large parts of the parameter
space of the NMSSM Higgs potential can be excluded by
requiring the global minimum to lead to the electroweak
symmetry breaking observed in Nature. We illustrate this
by determining the allowed and forbidden ranges for some
generic parameter values for this model.
In the literature we found many conditions which con-

strain parts of the parameter space in the NMSSM; see for
instance [3, 10, 11]. Typically the conditions used are neces-
sary, but it is not clear if they are also sufficient to ensure
that the resulting theory is acceptable. We also want to
mention that there is a purely numerical approach to deter-
mine the global minimum in the effective one-loopNMSSM
Higgs potential [12]. The aim of our present work is to sys-
tematically reveal all stationary points of the tree-level po-
tential by solving the system of equations which originates
from the stationarity condition. We show that this can be
done for the full parameter space including CP -violation.
With our method we can decide unequivocally if a given
parameter set of the tree-level Higgs potential leads to an
acceptable theory or not.

2 The method

We consider the tree-level Higgs potential of models hav-
ing SU(2)L×U(1)Y (weak isospin and hypercharge) elec-
troweak gauge symmetry. In particular we study models
with two Higgs doublets and n additional real Higgs
isospin and hypercharge singlets. This includes in particu-
lar THDMs, where we have no additional Higgs singlets,
and the NMSSM with one additional complex Higgs sing-
let corresponding to two real singlets. We assume both
doublets to carry hypercharge y = +1/2 and denote the
complex doublet fields by

ϕi(x) =

(
ϕ+i (x)

ϕ0i (x)

)
, i= 1, 2 . (1)

For the singlets we assume real fields which we denote by

φi(x), i= 1, . . . , n . (2)

We remark that in supersymmetric models like the
NMSSM the two Higgs doublets Hd, Hu carry hyper-
charges y =−1/2 and y =+1/2 respectively. This can be
translated to the convention used here by setting

ϕα1 =−εαβ(H
β
d )
∗ ,

ϕα2 =H
α
u , (3)

where

(εαβ) =

(
0 1
−1 0

)
. (4)

Complex singlet fields are embedded in our notation by
treating the real and imaginary parts of the complex sin-
glets as two real singlet degrees of freedom.

2.1 Gauge invariant functions

In the most general SU(2)L×U(1)Y gauge invariant Higgs
potential with the field content described above, the dou-
blet degrees of freedom enter solely via products of the
following form:

ϕ†iϕj with i, j ∈ {1, 2} . (5)

It is convenient to discuss the properties of the potential
such as its stability and its stationary points in terms of
these gauge invariant quadratic expressions. This was dis-
cussed in detail for THDMs and also extended for the case
of more than two doublets in [5]. We recall the main steps
here.
We arrange all possible SU(2)L×U(1)Y invariant

scalar products into the hermitian 2×2 matrix

K :=

(
ϕ†1ϕ1 ϕ†2ϕ1

ϕ†1ϕ2 ϕ†2ϕ2

)
(6)

and consider its decomposition

Kij =
1

2

(
K0δij+Kaσ

a
ij

)
, (7)

where σa are the Pauli matrices. The four real coefficients
in this decomposition are

K0 = ϕ
†
iϕi, Ka = (ϕ

†
iϕj)σ

a
ij , a= 1, 2, 3, (8)

where, here and in the following, summation over repeated
indices is understood. The matrix (6) is positive semi-
definite, which implies

K0 ≥ 0, K
2
0 −K

2
1 −K

2
2 −K

2
3 ≥ 0 . (9)

On the other hand, for every hermitian 2×2matrixKij (7),
where (9) holds there exist fields (1) satisfying (6) [5]. It
was also shown in [5] that the four quantities K0,Ka sat-
isfying (9) parametrise the gauge orbits of the Higgs dou-
blets. Using the inversion of (8),

ϕ†1ϕ1 = (K0+K3)/2, ϕ
†
1ϕ2 = (K1+iK2)/2 ,

ϕ†2ϕ2 = (K0−K3)/2, ϕ
†
2ϕ1 = (K1− iK2)/2 , (10)

we can replace the doublet terms of the potential – due
to renormalisability – by at most quadratic terms in the
real functions K0, K1, K2, and K3, which simplifies the
potential and eliminates all SU(2)L×U(1)Y gauge degrees
of freedom. We thus end up with a potential of the form
V (K0,K1,K2,K3, φ1, . . . , φn).
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2.2 Stationary points

To determine the stationary points of the Higgs poten-
tial we consider V (K0,K1,K2,K3, φ1, . . . , φn) and take
the constraint (9) into account.We distinguish the possible
cases of stationary points by the SU(2)L×U(1)Y symme-
try breaking behaviour which a vacuum of this type would
have [5].

– Unbroken SU(2)L×U(1)Y : a stationary point with

K0 =K1 =K2 =K3 = 0. (11)

A global minimum of this type implies a vanishing
vacuum expectation value for the doublet fields (1)
and therefore the trivial behaviour with respect to the
gauge group. The stationary points of this type are
found by setting all Higgs-doublet fields (or correspond-
ingly theK0 as well as theKa fields) in the potential to
zero and requiring a vanishing gradient with respect to
the remaining real fields:

∇V (φ1, . . . , φn) = 0 . (12)

– Fully broken SU(2)L×U(1)Y : a stationary point
with

K0 > 0,

K20 −K
2
1 −K

2
2 −K

2
3 > 0. (13)

A global minimum of this type has non-vanishing vac-
uum expectation values for the charged components of
the doublets fields in (1); thus it leads to a fully bro-
ken SU(2)L×U(1)Y [5]. The stationary points of this
type are found by requiring a vanishing gradient with
respect to all singlet fields and all gauge invariant func-
tions:

∇V (K0,K1,K2,K3, φ1, . . . , φn) = 0 . (14)

The constraints (13) on the gauge invariant functions
must be checked explicitly for the real solutions found.
– Partially broken SU(2)L×U(1)Y : a stationary point
with

K0 > 0,

K20 −K
2
1 −K

2
2 −K

2
3 = 0. (15)

For a global minimum of this type follows the desired
partial breaking of SU(2)L×U(1)Y down to U(1)em
[5]. Using the Lagrangemethod, these stationary points
are given by the real solutions of the system of equa-
tions

∇
[
V (K0,K1,K2,K3, φ1, . . . , φn)

−u(K20 −K
2
1 −K

2
2 −K

2
3)
]
= 0,

K20 −K
2
1 −K

2
2 −K

2
3 = 0 , (16)

where u is a Lagrange multiplier. The inequality in (15)
must be checked explicitly for the solutions found
for (16).

For a potential which is bounded from below, the global
minima will be among these stationary points. Solving the
systems of equations (12), (14) and (16), and inserting the
solutions in the potential, we can therefore identify the
global minima as those solutions which have the lowest
value of the potential. Note that in general there can be
more than one global minimum point.
From the mathematical point of view we havewith (12),

(14) and (16) to solve non-linear, multivariate, inhomoge-
neous systems of polynomial equations of third order. We
want to demonstrate that this is possible, even if the num-
ber of fields is large, like in the NMSSM. The most involved
case is given by (16), which for the NMSSM consists of
seven equations in seven indeterminates, namely six real
fields and one Lagrange multiplier.
In the following we describe an algorithmic method to

solve (12), (14) and (16) for the case that the number of
complex solutions is finite. The latter is indeed fulfilled for
the NMSSM with generic values for the parameters, and
it is automatically checked by the method. Note that the
gauge invariant functions avoid spurious continuous sets of
complex solutions, which we found to arise in the case of
the MSSM as well as the NMSSM if the stationarity con-
ditions are formulated with respect to the Higgs fields (1)
in a unitary gauge. This is not surprising, given the fact
that the gauge invariant functions express the contribu-
tion of the doublets to the potential by four real degrees of
freedom in contrast to the five encountered for the doublet
components in the unitary gauge.
The solution of multivariate polynomial systems of

equations is the subject of polynomial ideal theory and
can be obtained algorithmically in the Groebner basis ap-
proach [6]. See Appendix A for a brief introduction to this
subject. Within this approach the system of equations is
transformed into a unique standard form with respect to
a specified underlying ordering of the polynomial sum-
mands (monomials). This unique standard form of the
system of equations is given by the corresponding reduced
Groebner basis. If the underlying order is the lexicograph-
ical ordering, the unique standard form consists of equa-
tions with a partial separation in the indeterminates. We
use a variant of the F4 algorithm [13] to compute the
Groebner bases. A Groebner basis computation is gener-
ally much faster if the standard form is computed with
respect to total degree orderings and then transformed into
a lexicographical Groebner basis. The transformation of
bases from total degree to lexicographical ordering is done
with the help of the FGLM algorithm [14]. Finally, the sys-
tem of equations represented by the lexicographical Groeb-
ner basis has to be triangularised. The decomposition of
the system of equations with a finite number of solutions
into triangular sets is performed with the algorithm intro-
duced in [15, 16]. Each triangular system consists of one
univariate equation, one equation in two indeterminates,
one equation in three indeterminates and so forth. This
means that the solutions are found by subsequently solving
just univariate equations by inserting the solutions from
the previous steps.
The construction of the Groebner basis as well as the

triangularisation are done algebraically, so no approxima-
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tions are needed. However, the triangular system of equa-
tions contains in general polynomials of high order, where
the zeros cannot be obtained algebraically. Here numerical
methods are needed to find the in general complex roots of
the univariate polynomials.
In more involved potentials, like the NMSSM, the algo-

rithmic solution is considerably simplified (or even made
accessible), if the coefficients of the polynomials are given
in form of rational numbers. Since rational numbers are
arbitrarily close to real numbers and moreover the physi-
cal parameters are given only with a certain precision this
does not limit the general applicability of the method in
practice.
All algorithms for the computation of the Groebner ba-

sis with respect to a given order of the monomials, the
change of the underlying order, the triangularisation, and
the solution of the triangular systems are implemented in
the SINGULAR program package [9]. The solutions ob-
tained can be easily checked by inserting them into the
initial system of equations. Moreover, the number of com-
plex solutions; that is, the multiplicity of the system, is
known, so we can easily check that no stationary point is
missing.

3 Stationary points in the NMSSM

Now, we want to apply the methods introduced in Sect. 2
to the NMSSM.

3.1 The NMSSM Higgs potential

The NMSSM Higgs sector contains two doublets and one
singlet,

Hu =

(
H+u

H0u

)
, Hd =

(
H0d

H−d

)
, S, (17)

with the tree-level Higgs potential VNMSSM = VF+VD+
Vsoft [3, 11], where

VF = |λS|
2
(
|Hu|

2+ |Hd|
2
)
+
∣∣λHuHd+κS2∣∣2 ,

VD =
1

8
ḡ2
(
|Hd|

2−|Hu|
2
)2
+
1

2
g2
∣∣H†uHd∣∣2 ,

Vsoft =m
2
Hu |Hu|

2+m2Hd |Hd|
2+m2S|S|

2

+

[
λAλSHuHd+

1

3
κAκS

3+h.c.

]
. (18)

We use the notation HuHd ≡ εαβ(Hu)α(Hd)β =H+u H
−
d −

H0uH
0
d and ḡ =

√
g2+ g′2, where g and g′ are the SU(2)L

and U(1)Y gauge couplings, respectively. The parameters
of the potential are given by the experimentally fixed elec-
troweak gauge couplings and

λ, κ,m2Hu ,m
2
Hd
,m2S , Aλ, Aκ. (19)

The quartic terms of the potential (18) are positive for
any non-trivial field configuration, if both λ and κ are non-

vanishing. The potential is therefore bounded from below
for all cases considered here, and stability need not to be
checked any further.
We translate the NMSSM Higgs potential to the for-

malism described in the previous section, where we decom-
pose the complex singlet field into two real fields according
to S = Sre+iSim. In this notation the potential is given by

VF =
1

4
|λ|2
(
K21 +K

2
2 +4K0

(
S2re+S

2
im

))
+ |κ|2

(
S2re+S

2
im

)2
−Re(λκ∗)

(
K1
(
S2re−S

2
im

)
+2K2SreSim

)
+Im(λκ∗)

(
K2
(
S2re−S

2
im

)
−2K1SreSim

)
,

VD =
1

8
ḡ2K23 +

1

8
g2
(
K20 −K

2
1 −K

2
2 −K

2
3

)
,

Vsoft =
1

2
m2Hu (K0−K3)+

1

2
m2Hd (K0+K3)

+m2S
(
S2re+S

2
im

)
−Re(λAλ) (K1Sre−K2Sim)

+ Im(λAλ) (K2Sre+K1Sim)

+
2

3
Re(κAκ)

(
S3re−3SreS

2
im

)
+
2

3
Im(κAκ)

(
S3im−3S

2
reSim

)
. (20)

For given values of the potential parameters (19) we can
find all stationary points of the NMSSM by solving the
systems of equations (12), (14) and (16) as described
above.

3.2 Choice of parameters

In order to fix experimentally known parameters like the
electroweak scale it is inappropriate to choose numerical
values for the parameter set (19). Instead, we express dif-
ferent original parameters in terms of the desired vacuum
expectation values of the neutral components of the Higgs
doublets and the Higgs singlet, the mass of the charged
Higgs boson and a CP -violating phase. To this end we in-
troduce the vacuum expectation values of the Higgs fields,

〈Hu〉= e
iϕu

(
0
1√
2
vu

)
,

〈Hd〉=

(
1√
2
vd
0

)
,

〈S〉=
1
√
2
eiϕSvS , (21)

which are parametrised by vu, vd, vS , and the phases ϕu,
and ϕS . The stationarity condition of the potential at the
vacuum values for the fields requires a vanishing gradient
with respect to the Higgs fields. These equations relate the
parameters of the quartic terms as well as the soft-breaking
mass parameters with the vacuum expectation values. As
usual, we define v2 ≡ v2u+v

2
d and tanβ ≡ vu/vd. Further, if

we write the complex parameters λ, κ, Aλ, andAκ in polar
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coordinates with phases δλ, δκ, δAλ , δAκ and introduce the
abbreviations

δEDM ≡ δλ+ϕu+ϕS, δ
′
κ ≡ δκ+3ϕS , (22)

the initial parameters of the potential (19) can be replaced
by the new set of parameters

λ, κ, |Aκ|, tanβ, vS ,mH± , signRκ, δEDM, δ
′
κ , (23)

plus the electroweak scale v ≈ 246GeV. Note that it is not
sufficient to supply the length |Aκ|; in addition we have to
fix the sign of

Rκ ≡
1
√
2
Re
(
κAκe

i3ϕS
)
. (24)

In the mass matrix of the Higgs scalars, the CP -violating
entries which mix the “scalar” with the “pseudoscalar”
fields are proportional to the imaginary part of
exp[i(δEDM− δ′κ)].

3.3 Numerical results

As a numerical example we choose the parameter values

λ= 0.4, κ= 0.3, |Aκ|= 200GeV,

tanβ = 3, vS = 3v, mH± = 2v,

signRκ =−, δEDM = 0, δ
′
κ = 0 (25)

and consider the variation of one parameter at a time with
the values of the other parameters in (25) kept fixed. For
a given point in parameter space we compute all stationary
points of the NMSSM potential as described above.
As mentioned in Sect. 2.2 the Groebner basis construc-

tion is performed with numerical coefficients. Here we use
a precision of 12 digits for the input parameters (19), which
are determined from the values for the parameters (23).
The roots of the univariate polynomials are found numer-
ically, where we choose a precision of 100 digits. Our ap-
proach allows one to use arbitrary precisions in both cases.
We verify that the errors of the approximate statements
described in the following are under control.
For generic values of the parameters we find 52 complex

solutions: seven corresponding to the unbroken, 38 to the
partially broken, and seven to the fully broken cases. The
number of real and therefore relevant solutions depends on
the specific values of the parameters.
As expected from the Z3 symmetry of the potential, we

find either one or three solutions sharing the same value of
the potential within the accuracy of the numerical roots.
From the computed stationary points only those may be
accepted as global minima which correspond to the ini-
tial vacuum expectation values (up to the complex phases);
that is, which fulfill

√
2K0 ≈ v,

√
K0−K3
K0+K3

≈ tanβ,
√
2 (S2re+S

2
im)≈ vS .

(26)

Since for non-vanishing λ, κ the potential is bounded from
below, the stationary point with the lowest value of the po-
tential is the global minimum.
Further, we determine for every stationary solution,

whether it is a local maximum, local minimum or a sad-
dle point. For the regular solutions, i.e. the partially
and fully broken cases, this is achieved via the bor-
dered Hessian matrix (see for instance [17]) in terms of
K0,K1,K2,K3, Sre, Sim. This takes all powers of the dou-
blet fields into account, which allows for a definite de-
cision on the type of the stationary point also for fre-
quently encountered partial breaking solutions where at
least one mass squared is zero and the others have the
same sign. For irregular solutions, i.e. the non-breaking
solutions with K0 = 0, the Lagrange formalism cannot
be used since the gradients of the two boundary condi-
tions with respect to K0,K1,K2,K3, Sre, Sim become lin-
early dependent. Instead we resubstitute the original fields
H+u ,H

0
u,H

0
d ,H

−
d , Sre, Sim in this case and consider the free

Hessian matrix with respect to these fields. This turns out
to be sufficient in practice to judge on the type of the sta-
tionary points.
Figures 1 and 2 show the values of the potential

at all stationary points for the parameter values (25)
and the cases where successively one of the parameters
κ, λ, tanβ, vS ,mH± , δ

′
κ is varied.

Each curve in the figures represents 1- or 3-fold degen-
erate stationary potential values, where the gauge symme-
try breaking behaviour of the solutions is denoted by dif-
ferent line styles. Excluded parameter regions, where the
global minimum does not exhibit the required expectation
values (26), are drawn shaded. As is illustrated by the fig-
ures we find that substantial regions of the NMSSM pa-
rameter space are excluded. For some excluded parameter
regions, the partially breaking solutions with the required
vacuum expectation values (26) are saddle points (see for
instance Fig. 1, top). This means they can be discarded
as global minima without calculation of the other station-
ary points. However, this is not always the case. Obviously
from Fig. 2, top, we find an upper bound for vS . For the
plotted vS larger than this upper exclusion bound the so-
lutions fulfilling (26) are still pronounced minima, i.e. the
mass matrices have positive eigenvalues, but they are no
longer the globalminima.The influence of theCP -violating
phase δ′κ is shown in Fig. 2, bottom. Note that δ

′
κ→−δ

′
κ

is not a symmetry of the potential. However, the potential
is invariant under (δ′κ,K2, Sim)→−(δ

′
κ,K2, Sim); that is,

(δ′κ,Hu,Hd, S)→ (−δ
′
κ,H

∗
u,H

∗
d , S

∗), if the residual phases
are chosen as in (25). Therefore the stationary values of the
potential in Fig. 2 depend only on |δ′κ|. Also wewant to note
that in all figures shown here there are non-breaking sad-
dle points with potential values slightly above those of the
wanted global minimum. We find that this effect is not co-
incidental for the parameters (25) chosen here, but rather
a generic feature of theNMSSM.Within theCP -conserving
parameter range

λ ∈]0, 1], κ ∈]0, 1], Aκ ∈ ±]0, 2500]GeV, tanβ ∈]0, 50],

vs ∈]0, 5000]GeV, mH± ∈]0, 2500]GeV , (27)
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Fig. 1. Values of the NMSSM potential at its stationary points in dependence of κ, λ, tan β. The following parameters are kept
constant unless explicitly varied: λ = 0.4, κ = 0.3, |Aκ| = 200 GeV, tan β = 3, vS = 3v,mH± = 2v, signRκ = −, δEDM = δ

′
κ = 0.

Each line corresponds to 1 or 3 stationary points sharing the same value of the potential. The different line styles denote sad-
dle points, maxima, and minima. The labels ‘none’, ‘full’, and ‘partial’ denote solutions of the classes with unbroken (12), fully
broken (14), and partially broken (16) SU(2)L×U(1)Y , respectively. For solutions of the partially broken class, it is also denoted
whether they correspond to the ‘required VEVs’ vu, vd, vS or to ‘other VEVs’. Excluded parameter values, where the global
minimum does not exhibit the required vacuum expectation values, are drawn shaded

we select samples producing the wanted global minimum
and typically find non-breaking saddle points, where the
relative separation of the potential values for the sad-

dle points and the global minimum is below the per-
mille level, in many cases even far below. We do not
find fully breaking global minima for scenarios in the
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Fig. 2. Same as in Fig. 1 but for variation of vS , mH± , δ
′
κ, respectively

range (27) where the solutions with the required vac-
uum expectation values (26) are local minima. Eventu-
ally, we find examples, where CP -conserving parameter
values with the “wrong” global minimum produce the
wanted global minimum if a non-vanishing phase δ′κ is
introduced.

4 Conclusion

The stationarity conditions of Higgs potentials at the tree
level lead in general to non-linear, multivariate, polynomial
systems of equations. We have formulated the station-
arity conditions by means of gauge invariant functions,
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thus avoiding to have to deal with electroweak gauge
degrees of freedom. We have introduced the Groebner
basis approach to solve the systems of equations and
have applied the method to the NMSSM. Within the
Groebner basis approach we have easily found all sta-
tionary solutions even with general CP -violating param-
eters. We have demonstrated that large regions of the
parameter space of the NMSSM are excluded because
they do not lead to the required global minimum. Fi-
nally, we note that the method proposed here should
also be applicable to other potentials which neither have
to be restricted to two doublets nor even have to be
renormalisable.
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Appendix : Buchberger algorithm

In this appendix we want to sketch the construction of the
Buchberger algorithmwhich transforms a given set of poly-
nomials F into a Groebner basis G. The Groebner basis G
has exactly the same simultaneous zeros as the initial set
of polynomials F , but allows for better access to the actual
calculation of these zeros.
The general idea is to complete the set F by adjoining

differences of polynomials. Before we can present the al-
gorithms themselves we have to introduce the two basic
ingredients; that is, reduction and the S-polynomial . For
a more detailed discussion we refer the reader to the liter-
ature [6–8]. Here we follow closely [8]. First of all we recall
some definitions.

Definition 1. Polynomial ring
A polynomial ring K[x1, . . . , xn] ≡K[x] is the set of all
n-variate polynomials with variables x1, . . . , xn and coeffi-
cients in the fieldK.

Definition 2. Generated ideal
Let F = {f1, . . . , fn} ⊂K[x] be finite; F generates an ideal
defined by

I(F )≡

{ ∑
fi∈F

rifi

∣∣∣∣ri ∈K[x], fi ∈ F, i= 1, . . . , n
}
.

In the following we want to consider an explicit example;
that is, a set F = {f1, f2, f3} ⊂Q[x, y] of polynomials with
rational coefficients:

f1 = 3x
2y+2xy+y+9x2+5x−3 ,

f2 = 2x
3y−xy−y+6x3−2x2−3x+3 ,

f3 = x
3y+x2y+3x3+2x2 . (A.1)

The set F generates an ideal I(F ), which is given by the
set of sums of f1, f2, and f3, where each polynomial is
multiplied with another arbitrary polynomial from the ring

Q[x, y]. The summands of the polynomial are denoted as
monomials and each monomial is the product of a coeffi-
cient and a power product .
Further, we introduce an ordering (�) of the mono-

mials. In the lexicographical ordering (�lex) the mono-
mials are ordered with respect to the power of each
variable subsequently. The ring notation Q[x, y] defines
y �lex x; that is, for the lexicographical ordering of mono-
mials, powers of y are considered first, then powers of
x. Explicitly, this means 2x2y3 �lex 5xy2, because the
power of y is larger in the first monomial and 2xy2 �lex
5y2, because both monomials have the same power of y,
but the first monomial has a larger power of x. The
monomials of the polynomials (A.1) from the ring Q[x, y]
are ordered with respect to lexicographical ordering. In
total degree ordering (�deg) the monomials are ordered
with respect to the sum of powers in each monomial.
If two monomials have the same sum of powers, they
are ordered with respect to another ordering, for in-
stance lexicographical. For polynomials in Q[x, y] we
have x2y �deg 4xy, since the sum of powers of the left
power product is 3 compared to 2 for the right power
product.
The largest power product with respect to the un-

derlying ordering (�) of a polynomial f is denoted as
the leading power product , LP(f), the corresponding co-
efficient as leading coefficient , LC(f). With the help of
these preparations we can define the two essential parts
of the Buchberger algorithm; that is, reduction and the
S-polynomial .

Definition 3. Reduction
Let f, p ∈K[x]. We call f reducible modulo p, if for a power
product t of f there exists a power product u with LP(p)u=
t. Then, we say, f reduces to h modulo p, where h = f −
Coefficient(f,t)

LC(p) up.

In the example (A.1) the polynomial f3 is reducible mod-
ulo f1, since for example the second monomial of f3, that is
x2y, is a multiple of the LP(f1), and h= f3−1/3f1= x3y−
2/3xy−1/3y+3x3−x2−5/3x+1.
Reduction of a polynomial modulo a set P ⊂K[x] is ac-

cordingly defined if there is a p ∈ P such that f is reducible
modulo p. Further, we say that a polynomial h is in reduced
form or normal form modulo F , in short normf(h, F ), if
there is no h′ such that h reduces to h′ modulo F . A set
P ⊂K[x] is called reduced, if each p ∈ P is in reduced
form modulo P\{p}. Note that reduction is defined with
respect to the underlying ordering of the monomials, since
the leading power product is defined with respect to the or-
dering. In general, a normal form is not unique, neither for
a polynomial nor for a set.
Now we can present an algorithm to compute a normal

formQ⊂K[x] of a finite F ⊂K[x].

Algorithm. Normal form
For a given finite set F ⊂K[x] determine a normal form
Q⊂K[x]:
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Q := F

while exists p ∈Q

which is reducible modulo Q\{p} do

Q :=Q\{p}

h := normf(p,Q)

if h �= 0 then

Q :=Q∪{h}

return Q

Clearly, the simultaneous zeros of all fi ∈ F are also
simultaneous zeros of all qi ∈Q and vice versa.

Definition 4. S-polynomial
For g1, g2 ∈K[x] the S-polynomial of g1 and g2 is defined as

spol(g1, g2)≡
lcm
(
LP(g1),LP(g2)

)
LP(g1)

g1

−
LC(g1)

LC(g2)

lcm
(
LP(g1),LP(g2)

)
LP(g2)

g2 ,

where lcm denotes the least common multiple.

Clearly, a simultaneous zero of g1 and g2 is also a zero
of spol(g1, g2). In the example (A.1) we can build the
S-polynomial for any two polynomials, for instance

spol(f1, f2) =
x3y

x2y
f1−

3

2

x3y

x3y
f2 = x f1−3/2 f2

= 2x2y+5/2xy+3/2y+8x2+3/2x−9/2 .

Finally we define the Groebner basis.

Definition 5. Groebner basis
G ⊂K[x] is called a Groebner basis, if for all f1, f2 ∈ G
normf(spol(f1, f2), G) = 0.

Now we are in a position to present the Buchberger
algorithm.

Algorithm. Buchberger
For a given finite set F ⊂K[x] determine the Groebner ba-
sis G⊂K[x] with I(F ) = I(G):

G := F

B := {{g1, g2}|g1, g2 ∈G with g1 �= g2}

while B �= ∅ do

choose {g1, g2} from B

B :=B\{{g1, g2}}

h := spol(g1, g2)

h′ := normf(h,G)

if h′ �= 0 then

B :=B∪{{g, h′}|g ∈G}

G :=G∪{h′}

return G

Note that since G just follows by adjoining reduced S-
polynomials to F both sets generate the same ideal; espe-
cially, both sets have exactly the same simultaneous zeros.

It can be proven that the Buchberger algorithm
terminates.
The final step is to construct the reduced Groebner ba-

sis by applying the normal form algorithm defined above
to the Groebner basis G. It can be shown that the reduced
Groebner basis is unique [7]. If we apply the Buchberger al-
gorithm to the set (A.1) with subsequent reduction we end
up with the reduced Groebner basis (with underlying lexi-
cographical ordering):

g1 = y+x
2−3/2x−3 ,

g2 = x
3−5/2x2−5/2x .

The system of equations g1 = g2 = 0 is equivalent to f1 =
f2 = f3 = 0, but the former allows one to directly calculate
the solutions: since g2 = 0 is univariate it can be solved im-
mediately and subsequently g1 = 0 for each partial solution
inserted.
Despite the correctness of the Buchberger algorithm

tractability of practical examples requires one to improve
this algorithm. In particular, the number of iterations in
the algorithm drastically grows with increasing number
of polynomials and with higher degrees of the polynomi-
als. In this respect much progress has been made with the
improvement of this original Buchberger algorithm from
1965 [7, 8, 13].
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